If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24c^2+26c-15=0
a = 24; b = 26; c = -15;
Δ = b2-4ac
Δ = 262-4·24·(-15)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-46}{2*24}=\frac{-72}{48} =-1+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+46}{2*24}=\frac{20}{48} =5/12 $
| 2y+6y=180 | | -6(m+1)-m-9=-7(m+3)+6 | | 5x^2+16=11 | | 5x2+16=11 | | X=(y*0.35)+((y*0.65)-0.014875) | | 6a-5=2a+19 | | 4x+7(x-5)=(x-7) | | 7.8x-3.9=11.7 | | 11x-36=x+12 | | -9-2g=-27 | | -9-2g=-13 | | 3x-+8=40-x | | 6.4x-12=13.2 | | 6x^2−25x+19=5 | | -y+5y-3=y-1-4 | | 4(8x+4)=40 | | √16(y-4)=2√16(8-y)-8y | | 5x(4x-2)=x | | y2+5=14 | | -4/5m=-2/7 | | y/4=2/3 | | 4y÷2=8 | | 5x+2x-1=180 | | p/5=7/8 | | 3=5/6x | | -2/5n=-12 | | X+18=-x+4 | | 8x-8=3x+42 | | 3/7y=-7 | | v/2.75=-4 | | 2.1u=0.84 | | 8x-19=-1 |